🎯

bedrock-prompts

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

bedrock-prompts skill from adaptationio/skrillz

πŸ“¦

Part of

adaptationio/skrillz(191 items)

bedrock-prompts

Installation

pip installInstall Python package
pip install boto3 botocore
πŸ“– Extracted from docs: adaptationio/skrillz
2Installs
3
-
Last UpdatedJan 16, 2026

Skill Details

SKILL.md

Amazon Bedrock Prompt Management for creating, versioning, and managing prompt templates with variables, multi-variant A/B testing, and flow integration. Use when creating reusable prompt templates, managing prompt versions, implementing A/B testing for prompts, integrating prompts with Bedrock Flows, optimizing prompt engineering, or building production prompt catalogs.

Overview

# Amazon Bedrock Prompt Management

Overview

Amazon Bedrock Prompt Management provides enterprise-grade capabilities for creating, versioning, testing, and deploying prompt templates. It enables teams to centralize prompt engineering, implement A/B testing, and integrate prompts across Bedrock Flows, Agents, and applications.

Purpose: Centralized prompt template management with version control, variable substitution, and multi-variant testing

Pattern: Task-based (independent operations for different prompt management tasks)

Key Capabilities:

  1. Prompt Templates - Reusable templates with variable substitution
  2. Version Management - Track changes, rollback, and staged deployment
  3. Multi-Variant Testing - A/B test different prompt variations
  4. Flow Integration - Use prompts in Bedrock Flows and Agents
  5. Variable Types - String, number, array, and JSON object variables
  6. Prompt Catalog - Centralized library for team collaboration
  7. Cross-Model Support - Works with all Bedrock foundation models

Quality Targets:

  • Reusability: 80%+ prompt template reuse across applications
  • Version Control: 100% prompt changes tracked
  • Testing: A/B test 3+ variants per production prompt
  • Collaboration: Centralized catalog for team-wide access

---

When to Use

Use bedrock-prompts when:

  • Creating reusable prompt templates across applications
  • Managing prompt versions for rollback and staged deployment
  • Implementing A/B testing for prompt optimization
  • Building centralized prompt catalogs for teams
  • Integrating prompts with Bedrock Flows or Agents
  • Standardizing prompt engineering practices
  • Testing prompt variations before production deployment
  • Sharing prompts across multiple projects
  • Implementing variable substitution in prompts
  • Optimizing prompts with data-driven testing

When NOT to Use:

  • Single-use prompts without reuse (use inline prompts)
  • Simple applications without version control needs
  • Ad-hoc experimentation (test locally first, then promote to managed prompts)

---

Prerequisites

Required

  • AWS account with Bedrock access
  • IAM permissions for Bedrock Agent service
  • Foundation model access enabled
  • boto3 >= 1.34.0

Recommended

  • Understanding of prompt engineering best practices
  • Familiarity with Bedrock Flows or Agents
  • CloudWatch for monitoring prompt usage
  • S3 for storing prompt test results

Installation

```bash

pip install boto3 botocore

```

IAM Permissions

```json

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"bedrock:CreatePrompt",

"bedrock:GetPrompt",

"bedrock:UpdatePrompt",

"bedrock:DeletePrompt",

"bedrock:ListPrompts",

"bedrock:CreatePromptVersion",

"bedrock:ListPromptVersions",

"bedrock:InvokeModel"

],

"Resource": "*"

}

]

}

```

---

Quick Start

1. Create Prompt Template

```python

import boto3

import json

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

response = bedrock_agent.create_prompt(

name='customer-support-prompt',

description='Customer support response template',

variants=[

{

'name': 'default',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': '''You are a helpful customer support agent for {{company_name}}.

Customer Query: {{customer_query}}

Instructions:

  • Be professional and empathetic
  • Provide clear, actionable solutions
  • If you don't know, offer to escalate
  • Keep responses under {{max_words}} words

Response:''',

'inputVariables': [

{

'name': 'company_name'

},

{

'name': 'customer_query'

},

{

'name': 'max_words'

}

]

}

},

'inferenceConfiguration': {

'text': {

'maxTokens': 500,

'temperature': 0.7,

'topP': 0.9

}

}

}

]

)

prompt_id = response['id']

prompt_arn = response['arn']

print(f"Created prompt: {prompt_id}")

print(f"ARN: {prompt_arn}")

```

2. Create Prompt Version

```python

# Create immutable version for production

version_response = bedrock_agent.create_prompt_version(

promptIdentifier=prompt_id,

description='Production v1.0 - Initial release'

)

version = version_response['version']

print(f"Created version: {version}")

```

3. Get and Use Prompt

```python

# Get prompt details

prompt = bedrock_agent.get_prompt(

promptIdentifier=prompt_id,

promptVersion=version

)

# Extract template and variables

template = prompt['variants'][0]['templateConfiguration']['text']['text']

variables = {var['name']: None for var in prompt['variants'][0]['templateConfiguration']['text']['inputVariables']}

print(f"Template: {template}")

print(f"Variables: {list(variables.keys())}")

```

---

Operations

Operation 1: create-prompt

Create a new prompt template with variables and inference configuration.

Use when: Building reusable prompt templates, standardizing prompts across applications, creating prompt catalogs

Code Example:

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Create advanced prompt with multiple variable types

response = bedrock_agent.create_prompt(

name='product-recommendation-prompt',

description='E-commerce product recommendation engine',

defaultVariant='optimized',

variants=[

{

'name': 'optimized',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': '''You are a product recommendation expert for an e-commerce platform.

User Profile:

  • Name: {{user_name}}
  • Purchase History: {{purchase_history}}
  • Preferences: {{preferences}}
  • Budget: ${{budget}}

Available Categories: {{categories}}

Task: Recommend {{num_recommendations}} products that match the user's profile.

Format your response as a JSON array with product_id, name, price, and reason.''',

'inputVariables': [

{'name': 'user_name'},

{'name': 'purchase_history'},

{'name': 'preferences'},

{'name': 'budget'},

{'name': 'categories'},

{'name': 'num_recommendations'}

]

}

},

'inferenceConfiguration': {

'text': {

'maxTokens': 1000,

'temperature': 0.5,

'topP': 0.95,

'stopSequences': ['\n\n---']

}

}

}

],

tags={

'Environment': 'production',

'Team': 'recommendations',

'CostCenter': 'engineering'

}

)

print(f"Prompt ID: {response['id']}")

print(f"Prompt ARN: {response['arn']}")

print(f"Created At: {response['createdAt']}")

```

Best Practices:

  • Use descriptive names with hyphens (e.g., customer-support-prompt)
  • Document variable types and expected formats
  • Set appropriate maxTokens to control costs
  • Use defaultVariant to specify preferred version
  • Add tags for cost tracking and organization

---

Operation 2: create-prompt-version

Create immutable versions of prompts for production deployment and rollback.

Use when: Deploying prompts to production, implementing staged rollout, enabling rollback capability

Code Example:

```python

import boto3

from datetime import datetime

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Create version with detailed description

version_response = bedrock_agent.create_prompt_version(

promptIdentifier='prompt-12345',

description=f'Production v2.0 - {datetime.now().isoformat()} - Added sentiment analysis',

tags={

'Version': '2.0',

'ReleaseDate': datetime.now().strftime('%Y-%m-%d'),

'Changelog': 'Added sentiment context to improve response quality'

}

)

version_number = version_response['version']

version_arn = version_response['arn']

print(f"Version: {version_number}")

print(f"ARN: {version_arn}")

# List all versions

list_response = bedrock_agent.list_prompts(

promptIdentifier='prompt-12345'

)

print("\nAll versions:")

for version in list_response.get('promptSummaries', []):

print(f"- Version {version['version']}: {version.get('description', 'No description')}")

```

Version Management Best Practices:

  • Create versions before production deployment
  • Use semantic versioning in descriptions (v1.0, v1.1, v2.0)
  • Document changes in version descriptions
  • Keep DRAFT version for active development
  • Test versions thoroughly before promoting

---

Operation 3: get-prompt

Retrieve prompt details including template, variables, and inference configuration.

Use when: Inspecting prompt templates, debugging issues, preparing for invocation

Code Example:

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Get specific version

prompt = bedrock_agent.get_prompt(

promptIdentifier='prompt-12345',

promptVersion='2' # Omit for DRAFT version

)

# Extract configuration

variant = prompt['variants'][0]

template = variant['templateConfiguration']['text']['text']

variables = variant['templateConfiguration']['text']['inputVariables']

inference_config = variant['inferenceConfiguration']['text']

print(f"Prompt Name: {prompt['name']}")

print(f"Version: {prompt['version']}")

print(f"Model: {variant['modelId']}")

print(f"\nTemplate:\n{template}")

print(f"\nVariables:")

for var in variables:

print(f" - {var['name']}")

print(f"\nInference Config:")

print(f" Max Tokens: {inference_config['maxTokens']}")

print(f" Temperature: {inference_config['temperature']}")

print(f" Top P: {inference_config['topP']}")

```

---

Operation 4: list-prompts

List all prompts or filter by criteria.

Use when: Building prompt catalogs, auditing prompt usage, discovering available prompts

Code Example:

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# List all prompts with pagination

paginator = bedrock_agent.get_paginator('list_prompts')

page_iterator = paginator.paginate()

prompts = []

for page in page_iterator:

prompts.extend(page.get('promptSummaries', []))

print(f"Total prompts: {len(prompts)}")

print("\nPrompt Catalog:")

for prompt in prompts:

print(f"\n- {prompt['name']} (ID: {prompt['id']})")

print(f" Description: {prompt.get('description', 'N/A')}")

print(f" Created: {prompt['createdAt']}")

print(f" Updated: {prompt['updatedAt']}")

print(f" Version: {prompt['version']}")

```

---

Operation 5: update-prompt

Update prompt templates, add variants, or modify inference configuration.

Use when: Improving prompts, adding A/B test variants, adjusting inference parameters

Code Example:

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Update prompt with new variant

response = bedrock_agent.update_prompt(

promptIdentifier='prompt-12345',

name='customer-support-prompt',

description='Customer support with multiple response styles',

defaultVariant='professional',

variants=[

{

'name': 'professional',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': 'Professional tone template...',

'inputVariables': [{'name': 'query'}]

}

},

'inferenceConfiguration': {

'text': {'maxTokens': 500, 'temperature': 0.3}

}

},

{

'name': 'friendly',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': 'Friendly tone template...',

'inputVariables': [{'name': 'query'}]

}

},

'inferenceConfiguration': {

'text': {'maxTokens': 500, 'temperature': 0.7}

}

}

]

)

print(f"Updated prompt: {response['id']}")

```

---

Operation 6: delete-prompt

Delete prompt templates (cannot be undone).

Use when: Cleaning up unused prompts, removing deprecated templates

Code Example:

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Delete prompt (all versions)

response = bedrock_agent.delete_prompt(

promptIdentifier='prompt-12345'

)

print(f"Deleted prompt: {response['id']}")

print(f"Status: {response['status']}")

```

Warning: Deletion is permanent and affects all versions. Ensure prompt is not used in Flows or Agents before deleting.

---

Variable Types and Substitution

Supported Variable Types

Bedrock Prompt Management supports multiple variable types:

  1. String: Text values (default)
  2. Number: Numeric values
  3. Array: Lists of items
  4. JSON Object: Complex structured data

Variable Substitution Example

```python

import boto3

import json

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

bedrock_runtime = boto3.client('bedrock-runtime', region_name='us-east-1')

# Create prompt with complex variables

prompt_response = bedrock_agent.create_prompt(

name='data-analysis-prompt',

variants=[{

'name': 'default',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': '''Analyze the following data:

Dataset: {{dataset_name}}

Columns: {{columns}}

Row Count: {{row_count}}

Sample Data: {{sample_data}}

Analysis Type: {{analysis_type}}

Provide insights and recommendations.''',

'inputVariables': [

{'name': 'dataset_name'},

{'name': 'columns'},

{'name': 'row_count'},

{'name': 'sample_data'},

{'name': 'analysis_type'}

]

}

}

}]

)

# Use prompt with variable substitution

prompt = bedrock_agent.get_prompt(

promptIdentifier=prompt_response['id']

)

template = prompt['variants'][0]['templateConfiguration']['text']['text']

# Substitute variables

variables = {

'dataset_name': 'Sales Q4 2024',

'columns': json.dumps(['date', 'product', 'revenue', 'quantity']),

'row_count': '10,000',

'sample_data': json.dumps([

{'date': '2024-10-01', 'product': 'Widget A', 'revenue': 1500, 'quantity': 50},

{'date': '2024-10-02', 'product': 'Widget B', 'revenue': 2000, 'quantity': 75}

]),

'analysis_type': 'Revenue trends and product performance'

}

# Replace variables in template

prompt_text = template

for var_name, var_value in variables.items():

prompt_text = prompt_text.replace(f'{{{{{var_name}}}}}', str(var_value))

print(f"Final Prompt:\n{prompt_text}")

```

---

Multi-Variant Testing (A/B Testing)

Creating Multi-Variant Prompts

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Create prompt with 3 variants for A/B/C testing

response = bedrock_agent.create_prompt(

name='email-subject-generator',

description='A/B/C test for email subject lines',

defaultVariant='variant-a',

variants=[

{

'name': 'variant-a',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': 'Generate a professional email subject line for: {{email_content}}',

'inputVariables': [{'name': 'email_content'}]

}

},

'inferenceConfiguration': {

'text': {'maxTokens': 50, 'temperature': 0.3}

}

},

{

'name': 'variant-b',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-sonnet-20240229-v1:0',

'templateConfiguration': {

'text': {

'text': 'Create an engaging, click-worthy subject line for: {{email_content}}',

'inputVariables': [{'name': 'email_content'}]

}

},

'inferenceConfiguration': {

'text': {'maxTokens': 50, 'temperature': 0.7}

}

},

{

'name': 'variant-c',

'templateType': 'TEXT',

'modelId': 'anthropic.claude-3-haiku-20240307-v1:0',

'templateConfiguration': {

'text': {

'text': 'Write a concise, action-oriented subject line for: {{email_content}}',

'inputVariables': [{'name': 'email_content'}]

}

},

'inferenceConfiguration': {

'text': {'maxTokens': 50, 'temperature': 0.5}

}

}

]

)

print(f"Created multi-variant prompt: {response['id']}")

```

Testing Framework

```python

import boto3

import random

import json

from datetime import datetime

class PromptABTester:

def __init__(self, prompt_id, region='us-east-1'):

self.bedrock_agent = boto3.client('bedrock-agent', region_name=region)

self.bedrock_runtime = boto3.client('bedrock-runtime', region_name=region)

self.prompt_id = prompt_id

self.results = []

def get_variants(self):

prompt = self.bedrock_agent.get_prompt(promptIdentifier=self.prompt_id)

return [v['name'] for v in prompt['variants']]

def test_variant(self, variant_name, variables, user_id=None):

# Get prompt

prompt = self.bedrock_agent.get_prompt(promptIdentifier=self.prompt_id)

# Find variant

variant = next(v for v in prompt['variants'] if v['name'] == variant_name)

# Substitute variables

template = variant['templateConfiguration']['text']['text']

for var_name, var_value in variables.items():

template = template.replace(f'{{{{{var_name}}}}}', str(var_value))

# Invoke model

model_id = variant['modelId']

inference_config = variant['inferenceConfiguration']['text']

response = self.bedrock_runtime.invoke_model(

modelId=model_id,

body=json.dumps({

'anthropic_version': 'bedrock-2023-05-31',

'messages': [{'role': 'user', 'content': template}],

'max_tokens': inference_config['maxTokens'],

'temperature': inference_config['temperature']

})

)

result = json.loads(response['body'].read())

output = result['content'][0]['text']

# Record test result

self.results.append({

'timestamp': datetime.now().isoformat(),

'variant': variant_name,

'user_id': user_id,

'input_variables': variables,

'output': output,

'model': model_id

})

return output

def random_test(self, variables, user_id=None):

"""Randomly select variant for testing"""

variants = self.get_variants()

selected_variant = random.choice(variants)

return self.test_variant(selected_variant, variables, user_id)

def analyze_results(self):

"""Analyze test results by variant"""

analysis = {}

for result in self.results:

variant = result['variant']

if variant not in analysis:

analysis[variant] = {

'count': 0,

'avg_output_length': 0,

'samples': []

}

analysis[variant]['count'] += 1

analysis[variant]['samples'].append(result['output'])

analysis[variant]['avg_output_length'] += len(result['output'])

# Calculate averages

for variant in analysis:

count = analysis[variant]['count']

analysis[variant]['avg_output_length'] /= count

return analysis

# Usage

tester = PromptABTester('prompt-12345')

# Run A/B test

for i in range(100):

result = tester.random_test(

variables={'email_content': f'Test email content {i}'},

user_id=f'user-{i}'

)

# Analyze

analysis = tester.analyze_results()

print(json.dumps(analysis, indent=2))

```

---

Prompt Engineering Best Practices

1. Clear Instructions

```python

# Good: Specific, clear instructions

prompt = '''You are a financial analyst.

Task: Analyze the following quarterly earnings data and provide:

  1. Revenue trends (% change YoY)
  2. Key growth drivers
  3. Risk factors

Data: {{financial_data}}

Format: Use bullet points. Keep analysis under 200 words.'''

# Bad: Vague, unclear

prompt = '''Analyze this: {{financial_data}}'''

```

2. Variable Naming Conventions

```python

# Good: Descriptive variable names

inputVariables=[

{'name': 'customer_query'},

{'name': 'customer_purchase_history'},

{'name': 'max_response_words'}

]

# Bad: Ambiguous names

inputVariables=[

{'name': 'input'},

{'name': 'data'},

{'name': 'limit'}

]

```

3. Inference Configuration

```python

# Creative tasks: Higher temperature

'inferenceConfiguration': {

'text': {

'maxTokens': 1000,

'temperature': 0.8, # More creative

'topP': 0.95

}

}

# Factual tasks: Lower temperature

'inferenceConfiguration': {

'text': {

'maxTokens': 500,

'temperature': 0.1, # More deterministic

'topP': 0.9

}

}

```

4. Stop Sequences

```python

# Use stop sequences to control output length

'inferenceConfiguration': {

'text': {

'maxTokens': 1000,

'stopSequences': ['\n\n---', 'END_RESPONSE', '###']

}

}

```

---

Integration with Bedrock Flows

Using Prompts in Flows

```python

import boto3

bedrock_agent = boto3.client('bedrock-agent', region_name='us-east-1')

# Create flow that uses managed prompt

flow_response = bedrock_agent.create_flow(

name='customer-support-flow',

executionRoleArn='arn:aws:iam::123456789012:role/BedrockFlowRole',

definition={

'nodes': [

{

'name': 'FlowInput',

'type': 'Input',

'outputs': [{'name': 'query', 'type': 'String'}]

},

{

'name': 'SupportPrompt',

'type': 'Prompt',

'configuration': {

'prompt': {

'sourceConfiguration': {

'resource': {

'promptArn': 'arn:aws:bedrock:us-east-1:123456789012:prompt/prompt-12345:2'

}

}

}

},

'inputs': [

{

'name': 'customer_query',

'expression': 'FlowInput.query'

},

{

'name': 'company_name',

'expression': '"Acme Corp"'

},

{

'name': 'max_words',

'expression': '150'

}

],

'outputs': [{'name': 'response', 'type': 'String'}]

},

{

'name': 'FlowOutput',

'type': 'Output',

'inputs': [

{

'name': 'response',

'expression': 'SupportPrompt.response'

}

]

}

],

'connections': [

{'source': 'FlowInput', 'target': 'SupportPrompt'},

{'source': 'SupportPrompt', 'target': 'FlowOutput'}

]

}

)

print(f"Created flow: {flow_response['id']}")

```

---

Related Skills

  • bedrock-inference: Invoke foundation models directly
  • bedrock-flows: Build visual AI workflows with prompts
  • bedrock-agentcore: Create AI agents with managed prompts
  • bedrock-knowledge-bases: RAG applications with prompt templates
  • bedrock-guardrails: Apply safety policies to prompt outputs
  • claude-advanced-tool-use: Advanced prompt patterns for tool use
  • context-engineering: Optimize prompt context and token usage
  • prompt-builder: Build effective prompts (meta-skill)

---

Complete Example: Production Prompt Catalog

```python

import boto3

import json

from typing import Dict, List, Optional

class PromptCatalog:

"""Enterprise prompt catalog with versioning and testing"""

def __init__(self, region='us-east-1'):

self.bedrock_agent = boto3.client('bedrock-agent', region_name=region)

self.bedrock_runtime = boto3.client('bedrock-runtime', region_name=region)

self.catalog = {}

def create_prompt_template(

self,

name: str,

description: str,

template: str,

variables: List[str],

model_id: str = 'anthropic.claude-3-sonnet-20240229-v1:0',

max_tokens: int = 1000,

temperature: float = 0.7,

tags: Optional[Dict] = None

) -> str:

"""Create a new prompt template"""

response = self.bedrock_agent.create_prompt(

name=name,

description=description,

variants=[{

'name': 'default',

'templateType': 'TEXT',

'modelId': model_id,

'templateConfiguration': {

'text': {

'text': template,

'inputVariables': [{'name': var} for var in variables]

}

},

'inferenceConfiguration': {

'text': {

'maxTokens': max_tokens,

'temperature': temperature,

'topP': 0.9

}

}

}],

tags=tags or {}

)

prompt_id = response['id']

self.catalog[name] = prompt_id

return prompt_id

def version_prompt(self, name: str, description: str) -> str:

"""Create immutable version"""

prompt_id = self.catalog[name]

response = self.bedrock_agent.create_prompt_version(

promptIdentifier=prompt_id,

description=description

)

return response['version']

def get_prompt(self, name: str, version: Optional[str] = None) -> Dict:

"""Get prompt by name"""

prompt_id = self.catalog[name]

return self.bedrock_agent.get_prompt(

promptIdentifier=prompt_id,

promptVersion=version

) if version else self.bedrock_agent.get_prompt(promptIdentifier=prompt_id)

def list_catalog(self) -> List[Dict]:

"""List all prompts in catalog"""

response = self.bedrock_agent.list_prompts()

return response.get('promptSummaries', [])

# Usage

catalog = PromptCatalog(region='us-east-1')

# Create customer support prompt

support_id = catalog.create_prompt_template(

name='customer-support-v1',

description='Customer support response generator',

template='''You are a customer support agent for {{company_name}}.

Query: {{query}}

Provide a helpful, professional response in under {{max_words}} words.''',

variables=['company_name', 'query', 'max_words'],

max_tokens=500,

temperature=0.5,

tags={'Department': 'Support', 'Environment': 'Production'}

)

# Create version

version = catalog.version_prompt('customer-support-v1', 'Initial production release')

print(f"Created prompt: {support_id}")

print(f"Version: {version}")

# List catalog

prompts = catalog.list_catalog()

print(f"\nCatalog contains {len(prompts)} prompts")

```

---

Summary

Amazon Bedrock Prompt Management provides enterprise-grade prompt template capabilities:

  1. Centralized Management: Single source of truth for prompts
  2. Version Control: Track changes, rollback, staged deployment
  3. A/B Testing: Multi-variant testing for optimization
  4. Variable Substitution: Flexible templating system
  5. Flow Integration: Use prompts across Bedrock services
  6. Team Collaboration: Shared prompt catalog
  7. Production Ready: Immutable versions, tagging, monitoring

Use bedrock-prompts to standardize prompt engineering, enable A/B testing, and build reusable prompt libraries for production AI applications.