🎯

gemini-mcp

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

Manages and configures external MCP servers for Gemini CLI, enabling custom tool integrations, database connections, and enterprise workflows.

gemini-mcp

Installation

Claude Desktop ConfigurationAdd this to your claude_desktop_config.json
{ "mcpServers": { "database-tools": { "command": "python", "ar...
πŸ“– Extracted from docs: adaptationio/skrillz
1
-
Last UpdatedJan 16, 2026

Skill Details

SKILL.md

Manage MCP (Model Context Protocol) servers with Gemini CLI for extended tool capabilities, custom integrations, and enterprise workflows. Use when integrating external tools, databases, or APIs with Gemini.

Overview

# Gemini MCP Server Management

Comprehensive MCP (Model Context Protocol) server integration for extending Gemini CLI with custom tools and capabilities.

What is MCP?

MCP (Model Context Protocol) allows Gemini to connect to external servers that provide additional tools and capabilities:

  • Database connections
  • API integrations
  • Custom business logic
  • Enterprise systems
  • Specialized tools

Quick Start

List MCP Servers

```bash

# View configured servers

gemini mcp list

# Check server status

gemini -i

/mcp

# Test server connection

gemini mcp test

```

Add MCP Server

```bash

# Interactive setup

gemini mcp add

# Manual configuration

gemini mcp add \

--name "my-server" \

--command "python" \

--args "-m my_mcp_server" \

--cwd "./mcp-servers/"

```

Remove Server

```bash

gemini mcp remove

```

MCP Configuration

Configuration File

```json

// ~/.gemini/mcp-servers.json or ./.gemini/mcp-servers.json

{

"mcpServers": {

"database-tools": {

"command": "python",

"args": ["-m", "database_mcp_server"],

"cwd": "./mcp-tools/database",

"env": {

"DATABASE_URL": "postgresql://localhost/mydb",

"DB_PASSWORD": "$DB_PASSWORD_FROM_ENV"

},

"timeout": 30000,

"trust": false

},

"api-gateway": {

"command": "node",

"args": ["./api-mcp-server.js"],

"cwd": "./mcp-tools/api",

"env": {

"API_KEY": "$API_KEY",

"BASE_URL": "https://api.example.com"

},

"includeTools": ["getUser", "createOrder"],

"excludeTools": ["deleteUser"]

},

"analytics": {

"command": "docker",

"args": ["run", "-p", "8080:8080", "analytics-mcp:latest"],

"timeout": 60000,

"trust": true

}

}

}

```

Security Settings

```json

{

"mcpServers": {

"secure-server": {

"command": "python",

"args": ["secure_server.py"],

"trust": false, // Require confirmation for tool calls

"includeTools": ["safe_read", "safe_write"],

"excludeTools": ["dangerous_delete"],

"allowedDomains": ["*.internal.com"],

"maxConcurrent": 5,

"rateLimit": {

"requests": 100,

"window": 60000 // per minute

}

}

}

}

```

Building MCP Servers

Python MCP Server

```python

# database_mcp_server.py

import json

import sys

import psycopg2

from typing import Dict, Any

class DatabaseMCP:

def __init__(self):

self.conn = psycopg2.connect(

os.environ.get('DATABASE_URL')

)

def handle_request(self, request: Dict[str, Any]):

method = request.get('method')

params = request.get('params', {})

if method == 'query':

return self.execute_query(params.get('sql'))

elif method == 'insert':

return self.insert_data(

params.get('table'),

params.get('data')

)

def execute_query(self, sql: str):

cursor = self.conn.cursor()

cursor.execute(sql)

return cursor.fetchall()

def get_tools(self):

return [

{

"name": "database_query",

"description": "Execute SQL query",

"parameters": {

"type": "object",

"properties": {

"sql": {

"type": "string",

"description": "SQL query to execute"

}

},

"required": ["sql"]

}

},

{

"name": "database_insert",

"description": "Insert data into table",

"parameters": {

"type": "object",

"properties": {

"table": {"type": "string"},

"data": {"type": "object"}

},

"required": ["table", "data"]

}

}

]

if __name__ == "__main__":

server = DatabaseMCP()

server.start()

```

Node.js MCP Server

```javascript

// api-mcp-server.js

const { MCPServer } = require('@modelcontextprotocol/server');

const axios = require('axios');

class APIMCPServer extends MCPServer {

constructor() {

super();

this.baseURL = process.env.BASE_URL;

this.apiKey = process.env.API_KEY;

}

async getTools() {

return [

{

name: 'api_get',

description: 'Make GET request to API',

parameters: {

type: 'object',

properties: {

endpoint: {

type: 'string',

description: 'API endpoint path'

},

params: {

type: 'object',

description: 'Query parameters'

}

},

required: ['endpoint']

}

},

{

name: 'api_post',

description: 'Make POST request to API',

parameters: {

type: 'object',

properties: {

endpoint: { type: 'string' },

body: { type: 'object' }

},

required: ['endpoint', 'body']

}

}

];

}

async handleToolCall(name, params) {

const headers = {

'Authorization': Bearer ${this.apiKey},

'Content-Type': 'application/json'

};

switch(name) {

case 'api_get':

const response = await axios.get(

${this.baseURL}${params.endpoint},

{ headers, params: params.params }

);

return response.data;

case 'api_post':

const postResponse = await axios.post(

${this.baseURL}${params.endpoint},

params.body,

{ headers }

);

return postResponse.data;

default:

throw new Error(Unknown tool: ${name});

}

}

}

const server = new APIMCPServer();

server.start();

```

Docker MCP Server

```dockerfile

# Dockerfile for MCP server

FROM python:3.11-slim

WORKDIR /app

# Install dependencies

COPY requirements.txt .

RUN pip install -r requirements.txt

# Copy server code

COPY mcp_server.py .

# MCP protocol port

EXPOSE 8080

# Start server

CMD ["python", "mcp_server.py"]

```

```bash

# Build and run

docker build -t my-mcp-server .

docker run -p 8080:8080 -e DATABASE_URL="$DATABASE_URL" my-mcp-server

```

Usage Patterns

Database Operations

```bash

# Configure database MCP

cat > ~/.gemini/mcp-servers.json << 'EOF'

{

"mcpServers": {

"postgres": {

"command": "python",

"args": ["-m", "postgres_mcp"],

"env": {

"DATABASE_URL": "postgresql://user:pass@localhost/db"

}

}

}

}

EOF

# Use with YOLO for automated database operations

gemini --yolo -p "Query the users table and generate comprehensive report of active users from last week"

gemini --yolo -p "Create detailed sales analysis with charts from the orders table"

```

API Integration

```bash

# Configure API MCP

gemini mcp add \

--name "stripe" \

--command "node" \

--args "stripe-mcp.js" \

--env "STRIPE_KEY=$STRIPE_SECRET_KEY"

# Use with YOLO for automated API operations

gemini --yolo -p "Create a new customer and subscription using Stripe with full setup"

gemini --yolo -p "Generate comprehensive transaction report with analytics for this month"

```

Custom Business Logic

```bash

# Configure business logic MCP

gemini mcp add \

--name "business-rules" \

--command "java" \

--args "-jar business-mcp.jar"

# Apply business rules with YOLO automation

gemini --yolo -p "Validate this order against all business rules and generate compliance report"

gemini --yolo -p "Calculate pricing using custom algorithm and create detailed breakdown"

```

YOLO Mode with MCP Servers

YOLO mode with MCP servers enables powerful automation for trusted operations:

Automated Data Operations

```bash

# Database automation with YOLO

gemini --yolo -p "Using the database MCP:

  1. Query all user activity from last 30 days
  2. Generate engagement analytics
  3. Create user segmentation report
  4. Export findings to CSV
  5. Send summary email to stakeholders"

# Multi-database operations

gemini --yolo -p "Synchronize data between PostgreSQL and Redis:

  1. Read user sessions from Redis
  2. Update last_active in PostgreSQL
  3. Clean expired sessions
  4. Generate sync report"

```

API Workflow Automation

```bash

# Automated API orchestration

gemini --yolo -p "Using Stripe and database MCP servers:

  1. Fetch all subscription cancellations from Stripe
  2. Update user status in our database
  3. Send personalized retention offers
  4. Log all actions for audit
  5. Generate retention campaign report"

# Multi-service integration

gemini --yolo -p "Complete order processing workflow:

  1. Validate order via business rules MCP
  2. Process payment via Stripe MCP
  3. Update inventory via database MCP
  4. Send confirmation via email MCP
  5. Log transaction and generate receipt"

```

Enterprise Automation

```bash

# Automated compliance reporting

gemini --yolo -p "Generate quarterly compliance report:

  1. Query all financial data via database MCP
  2. Validate against regulations via compliance MCP
  3. Generate charts and visualizations
  4. Create executive summary
  5. Export to PDF and store securely"

# Infrastructure monitoring

gemini --yolo -p "Complete infrastructure health check:

  1. Query metrics from monitoring MCP
  2. Check service status via K8s MCP
  3. Analyze logs via logging MCP
  4. Generate incident reports
  5. Update status dashboard"

```

Safe YOLO Practices for MCP

```bash

# βœ… SAFE with YOLO (read-only or low-risk)

gemini --yolo -p "Generate analytics dashboard from database MCP"

gemini --yolo -p "Sync read-only data between MCP services"

gemini --yolo -p "Create comprehensive status reports from all MCPs"

# ⚠️ USE CAUTION (write operations)

# Review first, then use YOLO if confident

gemini -p "Plan user data migration between databases"

# After review:

gemini --yolo -p "Execute the reviewed migration plan"

# πŸ”’ NEVER YOLO (critical operations)

# Always manual approval for:

# - Production data deletion

# - Security configuration changes

# - Financial transactions above thresholds

```

MCP Server Management Automation

```bash

#!/bin/bash

# Automated MCP server lifecycle management

manage_mcp_servers() {

local operation="$1"

case $operation in

health-check)

gemini --yolo -p "Check health of all MCP servers and create status report"

;;

restart-all)

gemini --yolo -p "Safely restart all MCP servers in dependency order"

;;

update-configs)

gemini --yolo -p "Update all MCP server configurations and validate"

;;

deploy-new)

gemini --yolo -p "Deploy new MCP servers from configs and test connections"

;;

esac

}

# Usage

manage_mcp_servers health-check

```

Advanced Workflows

Multi-Server Orchestration

```bash

#!/bin/bash

# Orchestrate multiple MCP servers

orchestrate_mcp() {

# Start all servers

gemini mcp start database

gemini mcp start api

gemini mcp start analytics

# Execute workflow

gemini --yolo -p "Using all available MCP tools:

1. Query user data from database

2. Enrich with API data

3. Analyze with analytics tools

4. Generate comprehensive report"

# Stop servers

gemini mcp stop --all

}

```

Dynamic Server Management

```bash

#!/bin/bash

# Dynamically add servers based on project

setup_project_mcp() {

local project_type="$1"

case $project_type in

ecommerce)

gemini mcp add --name "payment" --command "payment-mcp"

gemini mcp add --name "inventory" --command "inventory-mcp"

gemini mcp add --name "shipping" --command "shipping-mcp"

;;

analytics)

gemini mcp add --name "bigquery" --command "bq-mcp"

gemini mcp add --name "tableau" --command "tableau-mcp"

;;

devops)

gemini mcp add --name "kubernetes" --command "k8s-mcp"

gemini mcp add --name "terraform" --command "tf-mcp"

;;

esac

echo "MCP servers configured for $project_type project"

}

```

Health Monitoring

```bash

#!/bin/bash

# Monitor MCP server health

monitor_mcp_health() {

while true; do

echo "=== MCP Server Status ==="

for server in $(gemini mcp list --json | jq -r '.servers[].name'); do

if gemini mcp test "$server" > /dev/null 2>&1; then

echo "βœ“ $server: Healthy"

else

echo "βœ— $server: Unhealthy"

# Attempt restart

echo " Attempting restart..."

gemini mcp restart "$server"

fi

done

sleep 30

done

}

```

Load Balancing

```json

// Load-balanced MCP configuration

{

"mcpServers": {

"api-pool": {

"type": "pool",

"strategy": "round-robin", // or "random", "least-connections"

"servers": [

{

"command": "node",

"args": ["api-1.js"],

"port": 8081

},

{

"command": "node",

"args": ["api-2.js"],

"port": 8082

},

{

"command": "node",

"args": ["api-3.js"],

"port": 8083

}

],

"healthCheck": {

"interval": 10000,

"timeout": 5000,

"path": "/health"

}

}

}

}

```

Security Best Practices

Authentication

```json

{

"mcpServers": {

"secure-server": {

"command": "python",

"args": ["server.py"],

"auth": {

"type": "bearer",

"token": "$MCP_AUTH_TOKEN"

},

"tls": {

"enabled": true,

"cert": "/path/to/cert.pem",

"key": "/path/to/key.pem",

"ca": "/path/to/ca.pem"

}

}

}

}

```

Tool Restrictions

```bash

#!/bin/bash

# Restrict MCP tool access

restrict_mcp_tools() {

local server="$1"

local allowed_tools=("$@")

# Generate config with restrictions

cat > ~/.gemini/mcp-restrictions.json << EOF

{

"$server": {

"includeTools": [${allowed_tools[@]}],

"requireConfirmation": true,

"logAllCalls": true,

"maxCallsPerMinute": 10

}

}

EOF

# Apply restrictions

gemini mcp update "$server" --config ~/.gemini/mcp-restrictions.json

}

# Usage

restrict_mcp_tools "database" "read_only_query" "get_schema"

```

Audit Logging

```python

# Auditing MCP server

import logging

import json

from datetime import datetime

class AuditedMCPServer:

def __init__(self):

self.audit_log = logging.getLogger('mcp.audit')

self.audit_log.setLevel(logging.INFO)

# Setup audit file

handler = logging.FileHandler('/var/log/mcp-audit.log')

formatter = logging.Formatter(

'%(asctime)s - %(name)s - %(message)s'

)

handler.setFormatter(formatter)

self.audit_log.addHandler(handler)

def handle_tool_call(self, tool, params, user_context):

# Log before execution

self.audit_log.info(json.dumps({

'event': 'tool_call_start',

'tool': tool,

'params': params,

'user': user_context,

'timestamp': datetime.utcnow().isoformat()

}))

try:

result = self.execute_tool(tool, params)

# Log success

self.audit_log.info(json.dumps({

'event': 'tool_call_success',

'tool': tool,

'result_size': len(str(result))

}))

return result

except Exception as e:

# Log failure

self.audit_log.error(json.dumps({

'event': 'tool_call_failure',

'tool': tool,

'error': str(e)

}))

raise

```

Troubleshooting

Common Issues

  1. Server Won't Start

```bash

# Check logs

gemini mcp logs

# Test manually

python -m my_mcp_server --debug

# Check port conflicts

lsof -i :8080

```

  1. Connection Timeout

```bash

# Increase timeout

gemini mcp update --timeout 60000

# Check network

ping localhost

telnet localhost 8080

```

  1. Tool Not Available

```bash

# List available tools

gemini -i

/tools

# Refresh tool list

gemini mcp refresh

# Check server implementation

gemini mcp debug

```

Debug Mode

```bash

# Enable debug logging

export GEMINI_MCP_DEBUG=true

# Verbose output

gemini --verbose mcp test

# Trace tool calls

gemini --trace -p "Use MCP tools to query database"

```

Performance Optimization

Connection Pooling

```json

{

"mcpServers": {

"database": {

"command": "python",

"args": ["db_mcp.py"],

"pool": {

"min": 2,

"max": 10,

"idle": 300000 // 5 minutes

}

}

}

}

```

Caching

```bash

# Enable MCP response caching

export GEMINI_MCP_CACHE=true

export GEMINI_MCP_CACHE_TTL=300 # seconds

# Clear cache

gemini mcp cache clear

```

Related Skills

  • gemini-cli: Main Gemini CLI integration
  • gemini-auth: Authentication management
  • gemini-chat: Interactive chat sessions
  • gemini-tools: Tool execution workflows