🎯

observability-pattern-detector

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

observability-pattern-detector skill from adaptationio/skrillz

πŸ“¦

Part of

adaptationio/skrillz(191 items)

observability-pattern-detector

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add adaptationio/Skrillz
Install PluginInstall plugin from marketplace
/plugin install skrillz@adaptationio-Skrillz
Claude CodeAdd plugin in Claude Code
/plugin enable skrillz@adaptationio-Skrillz
Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add /path/to/skrillz
Install PluginInstall plugin from marketplace
/plugin install skrillz@local

+ 4 more commands

πŸ“– Extracted from docs: adaptationio/skrillz
1Installs
3
-
Last UpdatedJan 16, 2026

Skill Details

SKILL.md

Automated pattern recognition in Claude Code telemetry. Use when detecting failures, slowness, anomalies, trends, inefficiencies, conversation patterns, or tool sequences.

Overview

# Observability Pattern Detector

Automated pattern recognition and anomaly detection in Claude Code telemetry data from enhanced hooks.

Data Source

Primary: {job="claude_code_enhanced"} in Loki

Operations

`detect-failures`

Group similar failures and identify patterns.

```logql

{job="claude_code_enhanced", event_type="tool_result", status="error"} | json

```

Algorithm: Group by error_type β†’ Calculate frequency β†’ Rank by impact.

Output: Failure patterns with occurrences, affected tools, first/last seen, trend.

`detect-slowness`

Identify large response patterns (proxy for slowness).

```logql

{job="claude_code_enhanced", event_type="tool_result"} | json | response_length > 100000

```

Algorithm: Flag responses >100k chars β†’ Group by tool β†’ Identify patterns.

Output: Slow operations with response sizes, affected tools.

`detect-anomalies`

Statistical anomaly detection in sessions.

```logql

{job="claude_code_enhanced", event_type="session_end"} | json | turn_count > 50

```

Methods: High turn count, long duration, many errors per session.

Output: Anomalous sessions with metrics, likely cause.

`detect-trends`

Long-term trend analysis.

```logql

sum(count_over_time({job="claude_code_enhanced", event_type="tool_call"} [1d]))

```

Metrics: Tool usage trend, error rate trend, session frequency trend.

Output: Trends with direction (increasing/decreasing/stable), rate.

`detect-waste`

Identify inefficiencies (redundant operations).

```logql

{job="claude_code_enhanced", event_type="tool_call"} | json | line_format "{{.tool_name}}:{{.previous_tool}}"

```

Patterns:

  • Multiple reads of same file (Readβ†’Read)
  • Repeated failed operations
  • Excessive Glob before Read
  • Many small edits vs one large edit

Output: Waste patterns with occurrences, recommendations.

`detect-conversation-patterns`

Analyze user prompt patterns.

```logql

sum by (pattern) (count_over_time({job="claude_code_enhanced", event_type="user_prompt"} | json [24h]))

```

Patterns:

  • Question frequency (pattern="question")
  • Debugging sessions (pattern="debugging")
  • Creation tasks (pattern="creation")
  • Ultrathink usage (pattern="ultrathink")

Output: Conversation style distribution, trends.

`detect-tool-sequences`

Identify common tool call sequences.

```logql

{job="claude_code_enhanced", event_type="tool_call"} | json | line_format "{{.previous_tool}} β†’ {{.tool_name}}"

```

Common Patterns:

  • Glob β†’ Read (file discovery)
  • Read β†’ Edit (modify after read)
  • Grep β†’ Read (search then open)
  • Task β†’ Task (parallel agents)

Output: Sequence frequencies, unusual patterns.

`detect-subagent-patterns`

Analyze Task tool usage patterns.

```logql

{job="claude_code_enhanced", event_type="tool_call", tool="Task"} | json

```

Patterns:

  • Subagent types distribution
  • Parallel spawning patterns
  • Subagent success rates

Output: Subagent usage analytics, recommendations.

`detect-context-issues`

Identify context window problems.

```logql

{job="claude_code_enhanced", event_type="context_compact"} | json

```

Patterns:

  • Frequent auto-compaction
  • High context usage sessions
  • Large response accumulation

Output: Context management issues, optimization suggestions.

`detect-permission-patterns`

Analyze permission request patterns.

```logql

{job="claude_code_enhanced", event_type="permission_request"} | json

```

Patterns:

  • Frequent permission requests
  • Permission types distribution
  • Permission denials

Output: Permission friction points, automation opportunities.

`detect-repo-patterns`

Repository activity patterns.

```logql

sum by (repo) (count_over_time({job="claude_code_enhanced", event_type="tool_call"} | json [7d]))

```

Patterns:

  • Most active repos
  • Tool usage by repo
  • Error rates by repo

Output: Project-level insights, cross-repo comparisons.

Example Output

```json

{

"failure_patterns": [

{

"pattern_id": "file_not_found",

"signature": "File does not exist",

"occurrences": 23,

"affected_tools": ["Read", "Edit"],

"trend": "stable",

"recommendation": "Add file existence check before operations"

}

],

"tool_sequence_patterns": [

{

"sequence": "Glob β†’ Read β†’ Edit",

"occurrences": 156,

"context": "Standard file modification flow"

}

],

"conversation_patterns": [

{

"pattern": "debugging",

"percentage": 35,

"avg_turns": 12,

"common_tools": ["Bash", "Read", "Grep"]

}

],

"context_issues": [

{

"issue": "auto_compaction_frequent",

"sessions_affected": 5,

"recommendation": "Use more focused queries, split large tasks"

}

]

}

```

Pattern Detection Queries

Failure Patterns

```logql

# Group errors by type

sum by (error_type, tool) (count_over_time({job="claude_code_enhanced", event_type="tool_result", status="error"} | json [24h]))

# Error timeline

{job="claude_code_enhanced", event_type="tool_result", status="error"} | json | line_format "{{.timestamp}} {{.tool_name}}: {{.error_type}}"

```

Tool Sequence Patterns

```logql

# Most common transitions

{job="claude_code_enhanced", event_type="tool_call"} | json | previous_tool != "" | line_format "{{.previous_tool}} β†’ {{.tool_name}}"

```

Session Anomalies

```logql

# Long sessions

{job="claude_code_enhanced", event_type="session_end"} | json | duration_seconds > 3600

# High error sessions

{job="claude_code_enhanced", event_type="session_end"} | json | error_count > 5

# High turn sessions

{job="claude_code_enhanced", event_type="session_end"} | json | turn_count > 30

```

Context Patterns

```logql

# Auto compactions

{job="claude_code_enhanced", event_type="context_compact", trigger="auto"} | json

# High utilization

{job="claude_code_enhanced", event_type="context_utilization"} | json | context_percentage > 80

```

Scripts

  • scripts/detect-failures.sh - Failure pattern detection
  • scripts/detect-anomalies.sh - Statistical anomaly detection
  • scripts/detect-trends.sh - Trend analysis
  • scripts/detect-sequences.sh - Tool sequence analysis
  • scripts/generate-pattern-report.sh - Full pattern report